Powered by: Blackwell Publishing

HRET - Health Research & Educational Trust

HSR - Health Services Research

Impacting Health Practice and Policy Through State-of-the-Art Research and Thinking

Our Next Issue

December 2018
Coming Soon! Read



Identification of Hospital Catchment Areas Using Clustering: An Example from the NHS

Objective. To develop a method of hospital market area identification using multivariate data, and compare it with existing standard methods.

Data Sources. Hospital Episode Statistics, a secondary dataset of admissions data from all hospitals in England, between April 2005 and March 2006.

Study Design. Seven criteria for catchment area definition were proposed. K-means clustering was used on several variables describing the relationship between hospitals and local authority districts (LADs) to enable the placement of every LAD into or out of the catchment area for every hospital. Principal component analysis confirmed the statistical robustness of the method, and the method was compared against existing methods using the seven criteria.

Principal Findings. Existing methods for identifying catchment areas do not capture desirable properties of a hospital market area. Catchment areas identified using K-means clustering are superior to those identified using existing Marginal methods against these criteria and are also statistically robust.

Conclusions. K-means clustering uses multivariate data on the relationship between hospitals and geographical units to define catchment areas that are both statistically robust and more informative than those obtained from existing methods.

back to top | back to article index | access/purchase full article

Copyright© 2018, Health Research & Educational Trust. All rights reserved. Content Disclaimer
Health Research & Educational Trust, 155 North Wacker, 4th Floor Chicago, IL 60606 (312) 422.2600