Powered by: Blackwell Publishing

HRET - Health Research & Educational Trust

HSR - Health Services Research

Impacting Health Practice and Policy Through State-of-the-Art Research and Thinking

Our Next Issue

February 2018
Coming Soon! Read

< ABSTRACT LIST

VOLUME 45 | NUMBER 6 | DECEMBER 2010


Development and Validation of a Disease-Specific Risk Adjustment System Using Automated Clinical Data

Keywords:
Automated clinical data; laboratory data; predicting mortality; risk adjustment; performance reporting; comparative effectiveness research

Objective. To develop and validate a disease-specific automated inpatient mortality risk adjustment system primarily using computerized numerical laboratory data and supplementing them with administrative data. To assess the values of additional manually abstracted data.

Methods. Using 1,271,663 discharges in 2000–2001, we derived 39 disease-specific automated clinical models with demographics, laboratory findings on admission, ICD-9 principal diagnosis subgroups, and secondary diagnosis-based chronic conditions. We then added manually abstracted clinical data to the automated clinical models (manual clinical models). We compared model discrimination, calibration, and relative contribution of each group of variables. We validated these 39 models using 1,178,561 discharges in 2004–2005.

Results. The overall mortality was 4.6 percent (n=58,300) and 4.0 percent (n=47,279) for derivation and validation cohorts, respectively. Common mortality predictors included age, albumin, blood urea nitrogen or creatinine, arterial pH, white blood counts, glucose, sodium, hemoglobin, and metastatic cancer. The average c-statistic for the automated clinical models was 0.83. Adding manually abstracted variables increased the average c-statistic to 0.85 with better calibration. Laboratory results displayed the highest relative contribution in predicting mortality.

Conclusions. A small number of numerical laboratory results and administrative data provided excellent risk adjustment for inpatient mortality for a wide range of clinical conditions.

back to top | back to article index | purchase full article

Copyright© 2017, Health Research & Educational Trust. All rights reserved. Content Disclaimer
Health Research & Educational Trust, 155 North Wacker, 4th Floor Chicago, IL 60606 (312) 422.2600